LANGUAGES
DISTRIBUTORS
OEM
SERVICES FOR COMPANIES
CLINICAL STUDIES AND REFERENCES
DRY EYE
PRODUCTS
COMPANY
DSLC200
DESCRIPTION
VIDEO
TECHNICAL DATA
PRODUCT PICTURES
ATLAS
BROCHURE
ACCESSORIES
BIBLIOGRAPHY
<
>

Atlas

Accessories

MINI PC

Human Bibliography

1. Management and therapy of dry eye disease: report of the Management and Therapy Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007 Apr; 5(2): 163-78.
2. Paugh JR, Nguyen AL, Ketelson HA, Christensen MT, Meadows DL. Precorneal residence time of artificial tears measured in dry eye subjects. Optom Vis Sci. 2008 Aug;85(8):725-31.
3. Garrett Q, Simmons PA, Xu S, et al. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2007;48:1559-67.
4. Garrett Q, Xu S, Simmons PA, et al. Carboxymethyl cellulose stimulates rabbit corneal epithelial wound healing. Curr Eye Res. 2008 Jul;33(7):567-73.
5. Zheng LL, Myung D, Yu CQ, Ta CN. Comparative In vitro Cytotoxicity of Artificial Tears. JSM Ophthalmol 2015;3(1): 1026.
6. Diebold Y, Herreras JM, Callejo S, Argueso P, Calonge M. Carbomer- versus cellulose-based artificial-tear formulations: morphologic and toxicologic effects on a corneal cell line. Cornea. 1998 Jul;17(4):433-40.
7. Tong L, Petznick A, Lee S, Tan J. Choice of artificial tear formulation for patients withdry eye: where do we start? Cornea. 2012 Nov;31 Suppl 1:S32-6.
8. Berger JS, Head KR, Salmon TO. Comparison of two artificial tear formulations using aberrometry. Clin Exp Optom. 2009;92:206-211.
9. Ridder WH III, Lamotte JO, Ngo L, et al. Short-term effects of artificial tears on visual performance in normal subjects. Optom Vis Sci. 2005;82:370-377.
10. Baudouin C, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013 Oct;11(4):246-58.
11. Hirata H, et al. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity. Invest Ophthalmol Vis Sci. 2015 Dec;56(13):8125-40.
12. Mager WH, Siderius M. Novel insights into the osmotic stress response of yeast. FEMS Yeast Res. 2002 Aug;2(3):251-7.
13. Lievens C, Berdy G, Douglass D et al. Clinical Evaluation of a New Enhanced Viscosity Eye Drop for Moderate to Severe Dry Eye Disease: A Multicenter, Double-Masked, Randomized 30-Day Study. AAOptAnnual Meeting, Oct 7-10, 2015, New Orleans, LA, USA.
14. Miller KL, Walt JG, Mink DR, et al. Minimal clinically important difference for the ocular surface disease index. Arch Ophthalmol. 2010 Jan;128(1):94-101.
15. Roth H-W, Conway T, Hollander DA. Evaluation of carboxymethylcellulose 0.5%/ glycerin 0.9% and sodium hyaluronate 0.18% artificial tears in patients with mild to moderate dry eye. Clin Optom. 2011:3;73-78.
16. Deng R, et al. Osmoprotectants suppress the production and activity of matrix metalloproteinases induced by hyperosmolarity in primary human corneal epithelial cells. Mol Vis. 2014 Sep 12;20:1243-52.
17. Hua X, et al. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress. Curr Eye Res. 2015 Jul;40(7):657-67.
18. Hua X,et al. Protective Effects of L-Carnitine Against Oxidative Injury by Hyperosmolarity in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5503-11. 19. P. A. Simmons, J.-E. Chang- Lin, Q. Chung, J. G. Vehige, D. Welty; Effect of Compatible Solutes on Transepithelial Electrical Resistance and Uptake in Primary Rabbit Corneal Epithelial Cell Layers Model. Invest. Ophthalmol. Vis. Sci. 2007;48(13):428.

COPYRIGHTS ALL RIGHTS RESERVED © 2020 SBM SISTEMI SRL